JOURNAL OF COMPUTATIONAL PHYSICS 121, 129141 (1995)

An Investigation of Some Pattern Selection Issues in the Rising
Plane Taylor Bubble Problem

PrABIR DaRrIPA

Department of Mathematics, Texas A&M University, College Station, Texas 77843

Received November 17, 1993; revised December 23, 1994

Plane Taylor bubbles with correct and incorrect tip angles are
numerically generated for the case of zero surface tension {s.t.)
using a Fourier collocation method. We find that all of these bubbles
satisfy correct asymptotic shape at their tails. We have identified
some generic patterns in the behavior of these bubbles with incor-
rect tip angles. We provide theoretical justifications of these obhser-
vations and provide some validation criteria for solutions with cor-
rect tip angle. We derive a tip angle dependent higher order
constraint on the solution at the tip and show this to be a very useful
validation criterion. The usefulness of this criterion is exemplified by
allowing tip angles of bubbles to be determined numerically. The
relevance of our results to accurate computation of the nature of
selection mechanism for the zero st limit bubble is dis-
cussed.  © 1995 Academic Press, Inc.

1. INTRODUCTION

A plane bubble rising in a tube models the late stages of
Rayleigh—Taylor instability, i.e., instability of a planar interface
separating a heavy fluid from a light fluid when a force is
pointing from the heavy to the light fluid. We consider a sym-
metric bubble rising at a constant velocity I/ in a two-dimen-
sional channel of width A (see Fig. 1). The interior angle at the
tip of the bubble is denoted by 6,. The flow exterior to the bubble
is considered inviscid and incompressible. In the absence of
surface tension (s.t.) 7, this problem is characterized by two
parameters, 6, and F, where

F=UlVgh. (0

Here g is the gravitational acceleration and the Froude number,
F, refers to the dimensionless speed of the bubble. The principal
issues have been the determination of allowable values of F
and 6, and of the asymptotic shape of the tail of the bubble
interface (i.e., for large x downstream; see Fig. 1). Theoretically,
it can be shown that allowable values of 8, are 180°, 120°, and
0° (see Section 3) and the asymptotic shape of the bubble
interface for large x downstream is

x=—FY21 — 2y) (2)

The asymptotic shape (2) serves to partially validate numerical
calculations. Determination of allowable values of F has been
analytically intractable. Birkhoff [1, 2] and Birkhoff and Carter
[3] were first to formulate this problem in the absence of surface
tension. They also addressed various issues related to this prob-
lem and the problem of laminar mixing. Based on their formula-
tion and calculations, Birkhoff and Carter predicted the speed
of the zero s.t. smooth bubhle somewhere between (.21 and
0.24. However, Garabedian [8] predicted the nonuniqueness of
these zero s.t. smooth bubbles rising at any F' = 0.24. Recent
numerical calculation of Vanden-Broeck [19] shows the follow-
ing: smooth bubbles for F < F,, cusped bubbles for F > F,
and pointed bubbles with 6 = 120° for F = F_, where F, =
0.35775. Thus, there is a general agreement about the existence
of a continuum of zero s.t. smooth bubbles.

However, bubbles which have been observed experimentally
[6, 7, 12, 14] (two- and three-dimensional) in the presence of
surface tension have unique s.t. dependent speeds, even when
s.t. is negligibly small. When s.t. is negligibly small, two-
dimensional bubbles of Lewis [12] rise at a speed which is
slightly higher than theoretical estimates of Garabedian and
Birkhoff based on zero surface tension. Birkhoff [1] explains
the possible cause of such discrepancies between theoretical
and experimental data. However, there seems to be a general
consensus that the idealized two-dimensional bubble in the
limit of zero s.t. should have speed somewhere between 0.23
and 0.24. The selection of such a unique zero s.t. limit bubble
out of a continuum of zero s.t. smooth bubbles was subsequently
explained by the numerical results of Vanden-Broeck [18].

There have been later calculations on this problem in the
presence of s.t. by other investigators including Couét and
Strumolo [4] and Kessler and Levine [10]. The general
agreement among these investigators is that there is a discrete
set of smooth bubbles embedded in a continuum of pointed
bubbles. However, there are discrepancies between the calcula-
tions of Vanden-Broeck [18] and Couét and Strumolo [4] on
the zero s.t. limit behavior of the smooth bubbles. Vanden-
Broeck [18] finds that zero s.t. limit of all smooth non-zero s.t.
bubbles is a unique bubble with F ~ 0.23. However, Couét
and Strumolo [4] using the same method as in [18] finds that
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FIG. 1. (a) The physical region: a bubble is rising upward in the fluid
with speed I/, The diameter of the tube is & (b) The circle plane: |o| = 1.

the least upper bound of the sequence of Froude numbers of
the non-zero s.t. smooth bubbles is approximately 0.23 as T —
0. Thus degeneracy is not removed in the zero s.t. limit ac-
cording to Cougt and Strumolo [4]. We speculate that the dis-
agreement between this limit bebavior results of Vanden-
Broeck and Couét and Strumolo may lie in misinterpretation
of the numerical results since their calculation procedures are
identical.

The issue that concerns us here is the discrepancy between
the calculation of Kessler and Levine [10] and later calculation
of Vanden-Broeck [20] on the quantitative estimates of the
selection mechanism. Kessler and Levine [10] uses a numerical
procedure based on the representation of the solution in integral
form using appropriate Green'’s function for the problem. These
investigators characterize the selection mechanism quantita-
tively by the rate of approach of the pointed bubbles 1o the
smooth bubbles in the limit of zero surface tension. To be
precise, these investigators estimate numerically (8/7 — 1) as
a function of T as T — 0. Vanden-Broeck [18] finds that
(8/m — 1) is exponentially small in 7, whereas Kessler and
Levine [10] finds that their “‘mismatch function’” which is the
same as (8/7 — 1) is algebraically small in T. It is worth
pointing out that the selection mechanism of such solitary pat-
terns in the contexts of crystal growth and Saffman-Taylor
finger is known to be associated with exponentially small terms
in T. In these related problems, exact known zero s.t. solutions
are used in the explanation of selection mechanism by analyses
of asymptotics beyond all orders [11]. However, such exact
analyses have not been possible for the bubble problem due to
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the lack of exact known zero s.t. solutions which are starting
points in these analyses. Therefore the question of precise nature
of selection mechanism for this problem remains open and it
remains to be seen whether selection mechanism is exponential
or algebraic.

The above disagreement between the calculations of Kessler
and Levine [10] and Vanden-Broeck [18] may be due to
the difficulty in computing correct values of tip angles of
these non-zero s.t. pointed bubbles. These bubbles, even if
physically meaningless, need to be computed correctly in
order to resolve the above discrepancy in the selection
mechanism. We must state right away that we do not resclve
this issue here. Instead, we argue that one of the possible
causes of the above disagreement is that the previous valida-
tion studies on these non-zero s.t. pointed bubbles may not
have been strict enough. Qur argument is based on consider-
ation of this problem without s.t., where we have a priori
knowledge of correct values of the tip angles of mathemati-
cally admissible bubbles. This allows us to test the possibility
of generating pointed bubbles with incorrect tip angles. In
particular, we show that numerical solutions with seemingly
incorrect tip angles seem to converge to solutions with correct
shape at the tail. We derive a tip angle dependent new higher
order constraint on the solution at the tip and call this
validation criterion as ‘‘tip selection criterion’” (TSC in short).
We show that construction of numerical solutions using TSC,
in particular where the tip angle is determined numerically,
is important because it indicates that numerical solution
reflects the properties of the continuous problem and has the
correct tip angle. We also identify some generic patterns in
the behavior of these bubbles with incorrect tip angles. We
provide theoretical justifications of these observations and
some validation criteria for solutions with correct tip angles.
The usefulness of these criteria in numerical determination
of tip angle is shown by allowing tip angles of bubbles to
be determined numerically. The relevance of our results to
accurate computation of the nature of the selection mechanism
for the zero s.t. limit bubble is also discussed. Hope is that
our analyses and numerical results presented here will shed
some light on the difficulty in numerically resolving the issue
of the selection mechanism without stricter validation criteria:

The rest of the paper is laid out as follows. In Section
2, mathematical formulation of this problem is given for the
sake of completeness and for our future reference. In Section
3 we provide a new higher order constraint on the solution
at the tip and use it to prove that the bubbles are either
round, cusped, or pointed with 120° angle at the tip. We
discuss a numerical method in Section 4 and present numerical
results in Section 5. In Section 6, we provide some theory
which explains most of our numerical observations. In Section
7, we list some validation criteria and suggest ways to
improve the numerical method for the purpose of remedying
such spurious sclutions with incorrect tip angles. We finally
conclude in Section §.
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2. PRELIMINARIES

The plane potential flow past a symmetric and infinitely long
bubble (sce Fig. 1), y = f(x), rising in a tube of width & at a
speed [/, is usually formulated in a frame of reference attached
to the bubble. With respect to the reference frame attached
to the bubble, the fluid upstream has a speed U/ downward,
Henceforth all variables will be appropriately normalized, speed
by U and time by (A/U). Since the fluid is incompressible,
flow can be described in terms of a potential ¢ and a stream
function i

The potential plane image of Fig. 1 is the infinite strip 0 =
¢ = 1; the slit & = & ¢ > 0 is the image of the interface; and
the lines y = 0, oy = 1 are the walls of the tube. The complex
potential w = ¢ + iy is an analytic function of the complex
variable = x + iy due to incompressibility of the flow field.
In the potential plane, the problem reduces to constructing the
complex velocity 7= Ing — i# = v — if as an analytic function
of w within the strip shown in the potential plane, Here g is
the speed and @ is the flow direction. The following system
then describes the flow in the potential plane:

T=7(w) In0<y<l,—® ==, (3a)
qz—%x-fconst, on lfl=%,(f)>0, (3b)
0=0,g=1 asd—> —o0,0= =1, (3¢)
=0 ong=0,¢=1,-%<¢d< o, (3d)

The solution T(w) of the system (3) is used to integrate the
equation

ﬂ —_ q*leif? = e-f(wJ’ (4)
dw

onw = ¢ + i/2, ¢ = (), 10 generate the bubble surface. It is
convenient to work in terms of an auxiliary complex variable
o which is introduced by the conformal mapping

e ™ =Ha ' = o). (%)

This mapping maps the bubble surface onto upper semi-circle
o= e a € [0, 7], the walls on the real axis and the flow
domain onto the interior of the domain bounded by the upper
semi-circle and the real axis (see Fig. 1b). The bubble surface
is obtained from integrating

cof ex
o = Zdz‘f)a == T

e O0=a=m, (6)

which is obtained from (4) and (5). The values of g{a) and
&) on the unit semmi-circle are obtained by solving the folow-
ing system which is the analog of system (3) in the circle plane,

r=rg) inle/=1,0<a=mn, {7a)
qfiu—ﬁx,,=0 omo=¢e*0=a=n7, (7b)
7(0) = 0. (7¢)
Imag{r(c=r)=0, —-1=r=},a=0. (7d)

The interface condition (7b) is obtained by differentiating (3b)
on the unit semi-circle. Here and below a subscript denotes
differentiation with respect to that variable. In addition, 7(o)
should satisfy the following conditions due to symmetry re-
quirement of the bubble surface,

(o) =7(—0), (8}

where an overbar denotes complex conjugacy. Due to (7d),
7() can be continued analytically across the real line in the
domain bounded by the lower semi-circle and the real axis.
Thus by Schwartz reflection principle we have

7(a) = 7(T) in|oj=1. e
The asymptotic behaviors of 7 at the tail (¢ = 1) and at the
tip (o = i) of the bubbles are given by

"= [~In C(1 — g¥]'*
(10}

aso— F1; e"=(1+ ) asog—Ii,
where v = 6/7 = 0 with 8, as the included angle of the bubble
at the tip. An appropriate representation of 7(¢) in |o| = 1

satisfying (7a) and (7¢) through (9) is given by

e = (1 + ?Y[—In C(1 ~ o9]*[~In C] "

» (rn
exp(E a,,a‘z"),

and using (4), the boundary condition (7b) can be rewritten for
the symmetric half of the bubble as

g

d
Trtanaeﬁ”d—y+;—2c05620, 0=a= (12)
o

STE

In (11) the Fourier coefficients, a,, are real and 0 << C << (.5.
The values of v and 6, obtained from solving (12) subject to
(11), determine the shape of the bubble form (6).

Equation (12) is a nonlinear eigenvalue problem with two
parameters F and y (y appears because of harmonic conjugacy
of v and @ according to (11)). The admissible values of F so
that (12) has solutions have been computed numerically [10,
19]. The allowable values of the other parameter, -y, are known
to be 0, % and 1 on heuristic ground (see Garabedian [9] and
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Modi [13]). In the next section, we give a new derivation for
the admissible values of .

3. SELECTION OF THE TIP ANGLE AND A NECESSARY
CONDITION FOR THE ADMISSIBILITY
OF NUMERICAL SOLUTIONS

The fiow field in the exterior of the bubble is governed by
Laplace’s equation which, in theory, would allow any arbitrary
angle at the tip of the bubble if it were not for the boundary
condition (12). Therefore, selection of the tip angle must be
hidden in the boundary condition. Without the use of this condi-
tion, one can at most infer from (10) that ¢ = O{B) as B =
/2 — a — 0, suggesting that g, = ¢|s—¢ is zero unless the tip
of the bubble is a cusp (y = 0). Here 8 = 0 corresponds to
the tip of the bubble. As seen below, a trivial manipulation of
the boundary condition (12) reveals the allowable values of the
tip angle, the local behavior of ¢ at the tip of the bubble,
and a relation which is computationally useful. The boundary
condition (12} can be rewritien as

d =itanﬁcosﬂ, 05,8<g, (13)

- 3
25\ = R

which is true for any arbitrary value of the tip angle 6,. It then
follows that the following must hold at the tip (8 = ) of
the bubbles,

F2
(g%gipm0 = 0 %(QB)ﬂBIBﬂ:COS(@JZ)- (14b)

(Note that {¢*)gsje=0 is zero for a round bubble which follows
from (14b), as well as from (10).) The allowable form of ¢ in
powers of 3 which is consistent with (14) as 8 — 0 is

143
g=q.+ ( COS(GJZ)) B+ 0By A>3 (15)

2rF?

For pointed bubbles (0 <C 6, < 7), the leading power of 8 in
(15) is § which implies that allowable pointed bubbles must
have 8, = 120° Also, note that cusped bubbles are possible
corresponding to g, 7 0 in (15). Round bubbles are possible
since the second term in (15) then vanishes and ¢ must then
be O(f8). This concludes the rederivation of the allowable values
of the tip angle. Below we use the notation 8, to denote any
one of these allowable values of tip angle.

The computational relevance of our result in this section is
obvious. Equation (14b) can be used as a necessary condition
for the admissibility of numerical solutions, in addition to Eq.
{2). This will provide added confidence in the numerical results.
It shouid be noted that both of these results are asymptotic
results: Eq. (2) at the tail and Eq. (14b) at the tip. As we will
see the local result (14b) is useful computationally. Below
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we refer to Eq. (14b) as TSC, an abbreviated form for tip
selection criterion.

4. A NUMERICAL METHOD

The expressions for v, # and their derivatives from (11) are
substituted into (12). This gives an equation containing £, 6,
and an infinite number of Fourier coefficients a,. In order to
soive it numerically, only a finite number of Fourier coefficients
are retained and this equation is applied at N equi-spaced points:
o, = (W2NYI — 8, F = 1, .., N. This gives a system of N
nonlinear equations which is solved by Newton’s iterations for
N unknowns. Numerical convergence in Newton’s iterations
for any choice of N is achieved if the values of the unknowns
do not change more than 107® between two successive Newton
iterations. The computations were performed on a Cray-YMP
in single precision. Once this is solved, values of ¢ and 8 at
mesh points are obtained from (11) and the bubble is obtained
by integrating (6). Numerical solutions are obtained in this
fashion for a sequence of values of N = 501. Unless otherwise
mentioned or exemplified, our results will correspond to cases
where, with increasing N, the tail end of the Fourier spectrum
tends to zero and the power series in (11) at the collocation
points appears to converge from our studies with ¥ = 501.
The values of N unknowns and the shapes of the bubble profiles
corresponding to these values of N are tested for convergence.
Numerical results of the next section fall into two categories,
depending on the choices of N unknowns: (i) N Fourier coeffi-
cients (¥ and 0, prescribed); and (ii) N - 1 Fourier coefficients
and 6, (F prescribed).

Two important remarks should be made regarding this nu-
merical method. First, the mesh points are deliberately selected
in a way to avoid the end-point singularities (see Eq. (10)): the
real part of t (i.e., » = log ¢) in (12) is unbounded at such
end-point singularities. Second, numerical procedure requires
evaluating », 6, and dv/da (see Eq. (12)) at the mesh points
and no higher order derivatives. This makes the finite resolution
calculations of this method somewhat insensitive to important
higher order effects such as the TSC, i.e., (14b).

5. NUMERICAL RESULTS

Among many case studies that we have done, only some
case studies are presented below. We summarize these numeri-
cal results as follows:

(a) Numerical solutions in which #, = 6,. One case from
this category corresponding to F = 0.23, 6, = 180°, referred
below as case (i), is presented.

(b) Numerical sclutions in which 6, # 6,. In particular, we
discuss solutions in which 8, is close to 8, versus solutions in
which &, is not close to 6,. Two cases for each of these subcate-
gories are discussed. Thus there are four cases from this cate-
gory. From the first subcategory, results presented correspond
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to F = 0.23, 6 = 178" (referred to below as case (ii)) and
F = 0.35775, 6, = 118° (referred to below as case (iii)). It
helps to keep in mind there is a general consensus that Egs.
{11y and (12) have solutions when F = (.23, 6, = 180° and
also when F ~ 0.35775, 8, = 120°. From the sccond subcate-
gory, results presented correspond to F = .40, 6, = 30° (re-
ferred to below as case (iv)) and F = 0.35, 6, = 135° (referred
to below as case (v)). Here again it helps to keep in mind
that there is numerical evidence that Egs. (11) and (12) admit
solutions when (F = 0.40, 8, = 0°) and (F ~ 0.35, 6, = 180°).

(¢) Numerical solutions in which the parameter 8, in (11}
is determined numerically by treating it as a free parameter in
the numerical procedure. Results of many case studies in this
category are presented in a concise manner.

There are altogether five cases from the categories (a) and
(b) in the above list. We find that interfaces generated with N
up to 251 (in some cases we have used ¥ up to N = 501)
converge in most cases to seemingly smooth profiles away from
the tip which satisfy the correct theoretical shape at the tail.
Case (i) corresponds to the correct parameter values and thus
needs no further explanation. For cases (ii) through (iv) (results
under category (b) above), it helps first to show the bubble
profiles in Fig. 2 and Fig. 3. Figure 2a shows numerically
generated bubble profiles for cases (ii) and (iii) when & = 121.
These bubble profiles seem to converge (Fig. 2(c) and Fig.
2(d)} and to agree well with the correct asymptotics at the tail
(Fig. 2(b)). Similarly, Fig. 3{a) shows numerically generated
bubble profiles for cases (iii) and (v} when N = 121. Except
in a small neighborhood near the tip for case (iv} (see Fig.
3(d)) these bubble profiles seem to converge (Fig. 3(c) and Fig.
3(d)) and to agree well with the correct asymptotics at the tail
{Fig. 3(b)).

Next we show numerical results mentioned under category
{c) above in which the parameter 8, in (11} is determined
numerically by treating it as a free parameter in the numerical
procedure. In all of these calculations, & = 180° is used as
initial guess for the tip angle. Figure 4(a) shows rates of conver-
gence of tip angles in Newton's iterations (see Section 4) for
values of F = 0.29 when N = 121. Figure 4(b) shows converged
values of #, against F for different choices of N. Convergence
of the plots, 6 vs. F, to the correct one, i.e., & = 180°, is seen
to be very slow. All bubbles with F' > (.15 in our calculations
of Fig. 4 at N = 121 satisfy the correct asymptotic shape at
the tail of the bubble. For F <C 0.15, a larger number of colloca-
tion points would be required so that the corresponding bubbles
satisfy the correct asymptotic shape at the tail of the bubble.
There is a consistent theoretical explanation as to why these
bubbles under categories (b) and (c) above with 8, # @, satisfy
the correct asymptotic (2) at the tail. We defer this explanation
untit the next section.

Since we want to give theoretical justification of some of
our numerical observations, we find it helpful to subdivide
these observations into following five categories.
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FIG. 2. Numerically induced spurious bubbles: (a) bubble profiles with
F = 0.35775, 6, = 118° (left branch) and F = 0.23, 8 = $78° (right branch),
N = 121; (b) comparison of theoretical and numerical shapes of tails of the
bubbles, ¥ = 121; {c) convergence of bubble profiles; (d) magnified view of
shapes of bubble profiles near the tip for varions values of N (note the scales
of the figure).

5.1. List of Observations. (i) Tip selection criterion
(TSC). There are altogether five cases from the categories (a)
and (b) in the list of calculations mentioned in the beginning
of Section 5. Table I shows numerical and theoretical values
of the TSC for these five cases.

The decimal places up to which numerical and theoretical
values of the TSC agree deteriorate from the second for case
(i) (the correct solution where (¢, — 8,) = 0) to the one for
cases (ii) and (iii) ((8, — 8.) = O) to none for cases (iv) and
(v), where (8, — 6,) is not small. Similar results about the value
of TSC is bome out by calculations leading to Fig. 4, where
6, is determined numerically. Corresponding values of TSC are
shown in Fig. 5. Figure 5 shows left (Fig. 5(a)) and right (Fig.
5(b)) hand sides of the TSC (see Eq. (14(b)) against F for runs
where 6, is determined numerically as discussed under category
{c) above. As we see from Figs. 4 and 5, 6 ~ &, = 180° for
these runs and agreement between theoretical and numerical
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FIG. 3. Numerically induced spurious bubbles: (a) bubble profiles with
F = 040, 6 = 90° (left branch) and F = 0.35, 6, = 135° (right branch),
N = 121; (b} comparison of theoretical and numerical shapes of tails of the
bubbles, N = 121; {c) convergence of bubble profiles; (d) magnified view of
shapes of bubble profiles near the tip for various values of N (note scales of
the figure).

values of TSC are up to two decimal places similar to the cases
(i1) and (iii) of Table L. In summary, TSC seems to be a useful
validation criterion for the fip angle.

(i) Asympiotic behavior of the Fourier coefficients. Table
1I shows the frequency of oscillations in the Fourier coefficients
for the cases in Table I and Fig. 6 shows the same for cases
corresponding to Fig. 4, where 8, is determined numerically.

Table 11 and Fig. 6 show that there are oscillations in the
Fourier coefficients for all solutions with 8, # @,. In particular,
we find that the values of the Fourier coefficients for these
solutions alternate in sign asymptotically, regardless of the
number of collocation points used in our calculations with
N = 31. As such, oscillations in the Fourier coefficients are
acceptable for correct solutions also, even though there are no
oscillations in the Fourier spectrum for case (i). Since such
oscillations in some cases are too small to be visible within
the resolution of the plots of a, vs. n, we plot log,y a, vs. n
when N = 251 for cases (i) through (v} of Table I in Fig. 7.

From these and many other runs not reported here we find that
Fourier coefficients of numerical solutions with & # 6, alternate
in sign asymptotically. We see that for n — N, |a,| = 107 for
the first three cases and |a,| = 107* for the last two cases. For
the last case (v), amplitude of the Fourier coefficients a, do
not scem to decrease after some n (see Fig. 7(e)). Nonetheless,
bubbles generated with these Fourier coefficients seem to have
smooth profiles as we have shown in Fig. 3. In Fig. 8 we show
plots of In n vs. n for these cases. Figure 8(a) shows the algebraic
decay rate of the Fourier coefficients for the correct solution
with F = (.23, 8, = 180°. We find that a, = O{n" %) in this case.

In summary, we find that perturbation of the parameter 6,
about 8, (cases (i) and (ii) in Table II) will cause the Fourier
coefficients of the numerical solutions 1o alternate in sign as-
ymptotically. Theoretical explanation of this is given in the
next section.

(iii) Behavior of the Fourier series. The Fourier series (see
Eq. (11)) seem to converge from our calculations at all colloca-
tion points. We also investigated the behavior of this series at

1.04
(&)
1.02 4
¥
1.00 p
———— fr=0.29 |
o s Fr=g.23
"""" Fr=b05
0.98 N 1 . 1 M 1 N
0 2 4 6 8
Number of Iterations
186 v T Y T T
()
184 b
8, 1
182 -
180
0.0 0.4

Froude Number

FIG. 4. Convergence of the tip angle: (a) convergence of -y with number
of iterations for various vaiues of Froude number with N = 121. {b) converged
values of the tip angle, 8,. as a function of Froude number for various values
of N.
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TABLE 1

Theoretical and Numerical Values of (mF 3} )aala-0

Case {F, &) N=31 N =121 N = 251 N =501 Theoretical
i (0.23, 180%) 0.001385 0.001385 0.001385 0.001385 0.0
ii (0.23, 178%) 0.00143 0.00138 0.00135 0.00135 0.0174

i (0.35775, 118Y) 0.488 0.466 0.462 0.460 0.315

iv {040, 90%) 15.31 69.73 18.14 — 0.7071068
v (.35, 135%) 0.236 0.146 0.136 0.164 0.3826834

the tip which is not one of the collocation points. If we denote
the sum of the first N terms of the Fourier series at the tip by
Sy, then the sequence {85, S121, Sz} for the five cases in Table
1 are respectively {—0.02986, —0.02519, -—0.02947},
{-—0.07465, —0.08939, —0.09790}, {—0.11329, —0.13346,
—0.15589}, {0.26178, 0.08929, 125812}, and {0.10223,
0.03062, —0.06904}. Note that there is no indication of any
divergence of these sequences for any of these cases. We will
show in the next section, the sum Sy should diverge at the tip
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for 8, # 6, and the lack of any indication of this divergence
in the series from the above sequence is due to slow divergence
of the series at the tip.

(iv) Behavior of @ near the tip: It is useful to recall that
limg_5 0(3) is the flow direction on the bubble interface as the
tip B = O (see Section 3 for a definition of 3) is approached
from the left side of the interface (see Fig. 1), Therefore, this
limit should be equal to —(#/2) for a correct value of 6. In
Fig. 9 through 13 we show g4 and & against 3. Figure 9(c}
through 13(c) respectively show magnified views of the plots
9(b) through 13(b) near the tip of the bubble. Note that in each
of these cases the flow direction @ near the tip seems to be
approaching a value close to its correct value as the tip is
approached. This is particularly remarkable for the case (iv)
(see Table I), where we have § -~ 0 near the tip even though
we have used 6, = 90° (# = 0 is the correct tip angle in this
case). Moreover, we see that 8 vs. 8 plots oscillate near the
lip of bubble for the cases (ii) through (iv). All of these, includ-
ing the oscillations in Fig. 9(c) through 13(c), are explained in
Section 3.

(v) Numerical determination of #: Fig. 4(b) shows that
error in #, is small, of the order of 2° to 3° when N = 251 since
the correct value of 6(F) is 180° for values of F in this figure.
Error is small because our initial guess is the correct value 180°
{see Fig. 4(a)). For an initial guess far from the correct value,
the error can be large or small, depending on the initial guesses
of the Fourier coefficients also. In summary, the numerically
obtained value of 6, for a given F need not be the correct tip
angle. There is a logical explanation as to why &, in our numeri-

TABLE II

Percentage of Oscillations in the Fourier Coefficients

Case (F, 8) N=31 N=121 N=251 N=50
i (023, 1809 0.0 0.0 0.0 0.0
i (023, 1789 86.2 96.6 98.4 99.2
i {0.35775, 118%) 93.1 98.32 99.2 100
o {0.40, 90°) 9.6 973 98.8 100
v (035, 1359 93.1 99.1 90,6 100
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cal procedure may converge to a value not necessarily close
1o the correct tip angle. This is explained in Section 6.

(vi) Asymptotic shape at the tail: Finally we should also
list here our observation that most of these numerical solutions
with 8, # 6, seem to converge to bubbles with the correct
asymptotic shape (2) at the tail.

The above subdivision reflects the way in which the following
section is organized,

6. DISCUSSIONS

We first provide theoretical justification of the numerical
observations listed in the previous section. It is convenient first
to write the logarithm of Eg. (11) in the form

Ho0)=g(o: 8), |o|=1, (16)

where we have used
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Flor; 8) = 1(r) —%ln(l + o+ h(C, & (17

and

=

gl )= al8)o™

n=1

(18)

The exact form of A{C, o) which can be deduced from (11)
and (17) is not important here. It suffices to note that £(C, o)
does not depend either on 6, or on F and its value is real at
the tip & = 1. In (18), we have explicitly emphasized dependency
of the Fourier coefficients, a,, on the parameter, ¢, which
facilitates our discussion below. Theoretical explanations of
the observations listed in 5.1 are given below in the same order
as in 5.1

(i} Tip selection criterion (TSC). TSC, i.e., Eq. (14b), de-
pends on &, and the selection mechanism of the tip angles 8,
1s hidden in this. Therefore, numerical solutions with €, # 8,
do not satisfy the TSC.

(ii}) Asymptotic behavior of the Fourier coefficients. Use
of correct tip angle @, for 8, in (17) makes T(o; #) bounded
and continuous. Therefore, the series g(o; 6,) for Ho; ;) (see
Eq. (16)) will converge pointwise to Ho; 6,) at all points on
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FIG. 7. Plot of togda,| vs n for the five cases in Table I when N = 251:
(@) F =023, 8, = 180° (b} F = 0.23, 6, = 178% (c) F = 0.35775, 6, = 118%
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the unit circle. From the continuity of T(o; 6,) on the unit
circle, it follows that g,(6,) = G(1/n) as n — =, ie., lim,_,
|a,,/n| << oo (see [15]). This estimate is most conservative and
in reality the Fourier coefficients are found to decay faster than
this from our numerical calculations, For example, for the case
(i) in Table T we find that ¢, = G(rn~'?) as n — o (see 5.1
and also Fig. 8(a)). Therefore, it will be fair for our purposes
to assume that
a(B)=o(l/n) asn-> o, {19
On the other hand, use of , # 8, in (17) introduces a logarithmic
singularity in ¥{o; 6) at ¢ = i and therefore the series g(o;
8} in (18) will converge everywhere except at the tip.
It is convenient to rewrite (17) in the form
Ho, ) =Ho; 8)+el(l + o9, |o=1, 20}
where & = (8, — 6)/7 is a measure of deviation of 8 from 4,,
The Taylor series expansion for In{l + o} about o = 0 is
given by

In(1 +oz)=i“+)”“(r’n, @1

=1
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which coverges for |a| = 1, except at ¢ = Fi (o = i represents
the tip of the bubble). Therefore, Eqs. (20) and (21) imply that
the Taylor series g(o; 6) for T o; 6) with 8, # 8,, will converge
for |o] =< 1, except at ¢ = +i. Substituting the series (18) for
#and the series (21) for In(1 + % in (20) and equating like
powers in ¢, which is legitimate for points away from the tip,
we obtain

(_ l)”+l
a0y =al6)+ e—n—, n=1, (22)
From (19) and (22), it then follows thal for 8 # 6,
— ati
a,,(B,)~s( ) asp— o0, (23)

This explains the oscillations in the Fourier coefficients as
n — o tabulated in Table II and seen in Figs. 6, 7, and 8.

(iii) Behavior of the Fourier series at and near the tip. The
origin of some of the observations including oscillations in the
bubble interface near the tip in Fig. 3(d) can be traced in the
term e In(1 + ¢?) in Eq. {20). On the bubble interface & =
¢, this logarithmic term which has a branch point at o =
i becomes
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gln(l + ¥} = g Inf2 cos e + ieS(ax), (24)
where the discontinuous function S(a) is given by
a, O<a<nal2
Slay=1 a—7w, w2<a<37/2 (25)
a— 27, 3n/2 <o <2n.
From (21) and (24) we have for « # 7/2, 37/2,
* —1yn*+l
In|2 cos e} = D, CL™ s 2na,
= n
| (26)

S(a) = i (_L)HH sin 2ng.

A=l

The Fourier series for In|2 cos e| converges everywhere to the
function, except at the tip. At the tip, the function diverges
logarithmically, whereas the series diverges as —E::. (1/n).
Note that these divergence rates are slow and about the same.
This causes the Fourier series of Eq. (11} to diverge very slowly
at the tip which may not be that easily evident from numerical
calculation with a modest number of collocation points. This
explains our observation (ii1) in 5.1.

(iv} Behavior of 8 near the tip. According to Eq. (20), flow
direction #, the imaginary part of 7, depends on the imaginary
part of & In{l + ¢@), i.e., S{e), and therefore the computed
values of & near the tip will behave the same way as the
convergence properties of &5(e). The Fourier series for the
discontinuous function S{«) defined in (25) converges with the
familiar Gibb’s phenomenon (see page 149 in [15]) in the
neighborhood of the tip; i.e., the series converges to the function
S(er) with oscillations near the tip. This explains the oscillations
in 8 near the tip when 8, # @,.

Our discussion and derivation of Eq. (17) suggests that the
solution (o) at a specific F away from the tip is not affected
by the choice of ¢, because any changes in the right-hand side
of (17) due to nonzero §, — 6, is exactly balanced by appropriate
changes in the Fourier coefficients, g,, which determine the
left-hand side of (17) through (18). Tt helps to recall that the
Fourier coefficients depend on 6, through (22), regardless of
whether 6, is equal to 6, or not. This explains why the flow
direction near the tip is close to its correct value regardless of
the value of 8,

(v) Numerical determination of #,. We observed that the
numerically determined value of 8, need not be the correct tip
angle 6,. The explanation lies in Eq. (17) which suggests that
for a correct solution 7(«) of (11) and (12), there are infinitely
many choices of 6, because to each choice of 6, there is a
unique set of Fourter coefficients given by (22) and, hence, a
unique 7 given by (18). The values to which the unknowns &,
and the Fourier coefficients {a,(8,)} converge depend on the
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initial guesses for these unknowns and all sets of converged
values refer to the same legitimate solution with correct tip
angle #,. This explains the resuits of our calculations leading
to Fig. 4. The converged values in Fig. 4(b) are close to the
correct tip angle, 180°, because the initial guess in all these
calculations is taken to be the correct tip angle as seen in
Fig. 4(a).

{vi) Aysmptolic shape at the tail. Numerical solutions with
0 # 8, satisfy the correct asymptotic shape (2) at the tail
because of two reasons: (i) it does not depend on €; and (ii)
the numerical solution (&) converges 1o the correct solution
away from the tip. Therefore, the bubble shape obtained from
integrating (4) should be the correct one corresponding to the
correct value of 6,. The oscillations in the bubble shape such
as in Fig. 3 for the case (iv) have to do with the effect of the
finite grid size because the convergence of the Fourier series
for 8 is not uniform and suffers from Gibb’s phenomenon near
the tip. In cases (i1) through (1v), we do not see these oscillations
within the resolution of the plots because in these cases the
integration of Eq. (4), used in obtaining these bubble interfaces,
provides very good smoothing of these oscillations in 6.

Finally, we should address the problem of the possibility of
estimating #, from calculations with 8, # 6,. Since the choice
of the parameter §, should not affect the solution (o) and the
bubble shape away from the tip, it may seem viable to obtain
a good estimate of 6, from the computed flow direction near
the tip of the bubble. From practical considerations, however,
this estimate may not be good enough in all cases as justi-
fied below.

6.1. Theoretical Estimate of 0, when 8,7 0,.
to introduce the variable #, through

Itis convenient

#.=—2 im Hla).

a—ni2

@n

Note that lim,_,., #(«) is the flow direction on the bubble
interface as the tip is approached from the left side of the bubble
(see Fig. 1) and therefore 6. is referred to here as the computed
value of the tip angle. Below we give a theoretical estimate of
¢, in terms of # and @,. From our analysis above it should be
obvious that all these angles assume the same value when 6,
is the correct tip angle.

To establish a relationship between these three angles when
6, # 8,, we should first recall from standard Fourier series
analysis of the sawtooth function S{c) (see [15]) that the series
for S{a) for @ — w/2 will be approximately 9% higher than
lim, ,.» S(a) due to Gibb’s phenomenon, i.e.,

-G Vit , m
lim { > sin 2na | ~ 1.09 lim S(a) = 1.09 . (28)

esmi N2l R a2 2

Keeping in mind that 7 = In ¢ — i#, the imaginary part of (16)
on the bubble interface away from the tip is
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— () — %S(a} + Imag(h(C, o = ™))
) (29)
= 2 af 8)sin 2ne.

n=1

For 6, = 6,, use of (25) and the fact that (-} is real at the tip
renders the left-hand side of this equation zero and continuous
at the tip and, therefore, we have

lim

a—wi2

(30)

(E a,(8,)sin 2na) =

=1

For 6, # #,, we have from (29),

®© g 1sntl
IZ(Z( D sin2na>, (31)

—lim #la) — L & lim
2 =1 n

=i

where we have made use of (22), (30, (25), and the fact that
h(:) is real at the tip. From (28) and (31) we then have

(32)

a—Tf2 2

61 (O
— lim f(@) =5 ~ 1.09 (9 9‘),

where we have used ¢ = (6, — 8)/7. In terms of &, (see Eq.
(27)), Eq. (32) then becomes

(6, — 0)~ 1.09(8, — 6), (33)
or, aliernatively, we have
(6. —6,)~0.09(6, - a), (34)

which gives the correct tip angle @, in terms of ¢, and 6,. Below
we estimate 6, using (27) and (34) and denote this estimated
value by &, It should be emphasized that 8, is one of the three
correct angles, whereas #; is the approximate value of any one
of these angle numerically estimated by the above procedure,

In principle, the computed value of # at the collocation point
nearest to the tip can be extrapolated to obtain the limiting
value lim,_.,» (a) which can then be used in (27) to obtain
an approximate estimate of 6,. This value of 6, and known §,
then can be used in (34) to obtain #5. To see the merit of this
method, we calculated & for the cases tabulated in Table I by
the above procedure and compared with the known values of
.. The &; and 4, for these five cases are respectively (180°,
180%), (180.09°, 180%), (122.62°, 1207, (15.5° 0.0), and
(173.07°, 180°). The estimates of &, for the last three cases are
not good, but it is really quite remarkable that these estimates
are not worse, These results could have been worse because
there is a fundamental difficulty in obtaining a good estimate
of 8, from finite resolution calculations. To see this, note from
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{27) that estimating 6, requires evaluating the limit in the right-
hand side of (27) from the series in (29). The series in (29)
converges nonuniformly away from the tip for 8, # 6, due to
the asympiotic behavior (23) of the Fourier coefficients in (29)
(i.e., due to Gibb’s phenomenon). This can cause some error
in the estimated value of the limit in the right-hand side of (27)
from its value at the collocation point nearest to the tip of

. the bubble by any ad hoc extrapolation (we have used linear

extrapolation in the above calculation). Besides, convergence
of the series in (29) deteriorates considerably due to slow decay
rate of the Fourier coefficients (see (23)). This should also be
evident from the plots in Fig, 7 and 8.

The function @(F) undoubtably depends sensitively on the
value of & at each F. Even a small error in the estimate of 6,
at each £ can cause the function 85(#) to deviate significantly
from the desired function 8,(F). Similarly, the numerically
determined function 8(F) can deviate significantly from the
desired function 8,(F) since the numerically determined value
of @ at any F need not be the corresponding #, for reasons
discussed earlier. For example, consider the numerical results
resulting in Fig. 4(b). If we take the plot of 4, vs. F when
N = 151 as a good approximation to the desired function 8,(F),
then we see in Fig. 4(b) that #(F) is a polynomial of some
degree higher than cone. On the other hand, we know that the
desired function 8,(F) is a polynomial of degree zero (8,(F) =
180°). Thus, there is some inherent difficulty in numerically
predicting the correct functional form of the desired function
8,(F) from numerically determined values of & or 6, at various
F. We believe that this should be true even when the surface
tension is nonzero. We conjecture that the difficulty in obtaining
a reliable estimate of the selection mechanism would be similar.
Even though we have not addressed the problem here with
nonzero surface tension, our hope is that these results will shed
some light on this problem, in particular, possible sources of
disagreement among various investigators about the estimate
of selection mechanism in the presence of surface tension.

7. VALIDATION CRITERIA AND REMEDIAL OF
SPURIOUS SOLUTIONS

The effect of using 8, # 6, is explained and exemplified in
the previous sections. However, all of these effects arising due
to f, # 8, are not suitable for validation purposes because some
of these do not necessarily imply that 8, # 6,. For example,
oscillations in the Fourier spectrum are prefectly acceptable
for legittimate solutions. However, we can clearly identify the
following implementable criteria for validation of numerical
solutions other than the asymptotics (2) at the tail.

(i) Tip selection criterion (T'SC). The tip selection criterion,
i.e., Eq. (14(b)), will not be satisfied for 6, # #,. This criteria
is useful because it can be used a priori or a posteriorl. A priori
use of this as an auxilary equation in our numerical procedure
will guarantee that 4, is the correct tip angle of the numerical so-
lutions.
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We incorporated TSC in the numerical method to remedy
numerical solutions for 4, # 6,. We made the following modifi-
cations of the method described in Section 4: (i) truncate the
Fourier series after (N + 1) terms instead of IV terms; and (ii)
increase the number of equations from N to N + 1 by using
Eq. (14{b)) at « = 71/2 after substituting appropriate expressions
for g and # and their derivatives from truncated version of (11)
into (14(b)). We tested this strategy and were not able to obtain
any solutions for 6, # 6, and thus we were successful in remedy-
ing the spurious solutions. However, we should point out that
this modification of the method deteriorates the convergence
properties of the Newton iterations when 8, = 6,. This is not
very surprising because the TSC imposes a constraint on the
aliowable values of the Fourier coefficients.

(ii) Behavior of & near the tip. If 6., given by (27), equals
6, then 4, is the correct tip angle #; according to (33). This, of
course, assumes that we have a good estimate of 6, from our
computations. This can be estimated from numerical results in
the same way as we have done in the previous section. Also,
as noted earlier, 8o} should converge uniformly for correct
solutions everywhere. Usually for § # 6,, the convergence will
not be uniformn and #(a) will oscillate near the tip.

8. CONCLUSIONS

We have derived a new higher order constraint on the solution
at the tip of zero s.t. bubbles. We have exemplified its usefulness
in detecting spurious solutions and shown this to be a stricter
validation criterion than the asymptotics at the tail. We have
also explained the difficulty in accurate evaluation of tip angles
numerically and suggested some validation criteria for tip
angles, We have emphasized that this can cause significant
error in the numerical determination of the function describing
the dependency of the tip angle on the speed (F) of the bubbles.
We have argued that the difficulties could be similar in the
presence of surface tension and could be the source of disagree-
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ment among various investigators about the selection mecha-
nism of the zero s.t. limit bubble. We have emphasized the
need for improved convergence and validation studies to resolve
this disagreement.
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